16 research outputs found

    Doppler Sensing Using WiFi Round-Trip Channel State Information

    Get PDF

    Doppler Sensing Using WiFi Round-Trip Channel State Information

    Get PDF
    This paper presents a wireless sensing system using WiFi round-trip channel state information (RTCSI). It is implemented using the channel state information (CSI) from the Raspberry Pi CM4 onboard WiFi chip and a customized WiFi protocol. Utilizing the CSI phase in WiFi sensing is challenging as hardware imperfections and asynchronization introduce significant phase errors. Similar to WiFi round-trip time (RTT) ranging, RTCSI cancels the adverse effect of asynchronization through two-way communication. Since the phase of RTCSI is reliable and useful, a Doppler sensing prototype is built to detect a moving target in the wireless channel. Our findings show that the additional phase information utilised in RTCSI significantly enhances CSI-based WiFi sensing. Moreover, it may be integrated with other techniques to further improve the performance in joint communications and sensing

    A High-Speed Multi-Purpose Software Defined Radar for Near-Field Applications

    Get PDF
    Software Defined Radar (SDRadar) is a unique radar system, where most of its processing, like filtering, correlation, signal generation etc. is performed by software. This means SDRadar can be flexibly deployed for different purposes and with a relative short development process. In this paper, we present a generic SDRadar system that can operate in different setups for near-field monitoring applications. Practical solutions for traditional limitations in SDRadar and high sampling rates are introduced, and its performance is demonstrated using a commercial universal software radio peripheral (USRP) device with four synchronized receiving channels and a maximum sampling rate of 100MHz. Additionally, a GPU accelerator has been implemented to deal with the high sampling rate. Three different setups have been tested to demonstrate the feasibility of the propose SDRadar system with distributed nodes, vertically positioned nodes and a miniature scenario. Recorded Doppler signatures have shown the proposed SDRadar can effectively capture the body and hand gestures. Such results can be used in a range of applications such as eHealth, human-machine interaction and indoor tracking

    People counting using multistatic passive WiFi radar with a multi-input deep convolutional neural network

    Get PDF
    Accurately counting numbers people is useful in many applications. Currently, camera-based systems assisted by computer vision and machine learning algorithms represent the state-of-the-art. However, they have limited coverage areas and are prone to blind spots, obscuration by walls, shadowing of individuals in crowds, and rely on optimal positioning and lighting conditions. Moreover, their ability to image people raises ethical and privacy concerns. In this paper we propose a distributed multistatic passive WiFi radar (PWR) consisting of 1 reference and 3 surveillance receivers, that can accurately count up to six test subjects using Doppler frequency shifts and intensity data from measured micro-Doppler (µ-Doppler) spectrograms. To build the person-counting processing model, we employ a multi-input convolutional neural network (MI-CNN). The results demonstrate a 96% counting accuracy for six subjects when data from all three surveillance channels are utilised

    FMNet: Latent Feature-wise Mapping Network for Cleaning up Noisy Micro-Doppler Spectrogram

    Get PDF
    Micro-Doppler signatures contain considerable information about target dynamics. However, the radar sensing systems are easily affected by noisy surroundings, resulting in uninterpretable motion patterns on the micro-Doppler spectrogram. Meanwhile, radar returns often suffer from multipath, clutter and interference. These issues lead to difficulty in, for example motion feature extraction, activity classification using micro Doppler signatures (μ\mu-DS), etc. In this paper, we propose a latent feature-wise mapping strategy, called Feature Mapping Network (FMNet), to transform measured spectrograms so that they more closely resemble the output from a simulation under the same conditions. Based on measured spectrogram and the matched simulated data, our framework contains three parts: an Encoder which is used to extract latent representations/features, a Decoder outputs reconstructed spectrogram according to the latent features, and a Discriminator minimizes the distance of latent features of measured and simulated data. We demonstrate the FMNet with six activities data and two experimental scenarios, and final results show strong enhanced patterns and can keep actual motion information to the greatest extent. On the other hand, we also propose a novel idea which trains a classifier with only simulated data and predicts new measured samples after cleaning them up with the FMNet. From final classification results, we can see significant improvements

    Decimeter-Level Indoor Localization Using WiFi Round-Trip Phase and Factor Graph Optimization

    Get PDF
    Indoor localization using WiFi signals has been studied since the emergence of WiFi communication. This paper presents a novel training-free approach to indoor localization using a customized WiFi protocol for data collection and a factor graph-based back-end for localization. The protocol measures the round-trip phase, which is very sensitive to small changes in displacement. This is because the sub-wavelength displacements introduce significant phase changes in WiFi signal. However, the phase cannot provide absolute range information due to angle wrap. Consequently, it can only be used for relative distance (displacement) measurement. By tracking the round-trip phase over time and unwrapping it, a relative distance measurement can be realized and achieve a mean absolute error (MAE) of 0.06m. For 2-D localization, factor graph optimization is applied to the round-trip phase measurements between the STA (station) and four APs (access points). Experiments show the proposed concept can offer a decimeter-level (0.26m MAE and 0.24m 50%CDF) performance for real-world indoor localization

    MDPose:Human Skeletal Motion Reconstruction Using WiFi Micro-Doppler Signatures

    Get PDF
    Motion tracking systems based on optical sensors typically often suffer from issues, such as poor lighting conditions, occlusion, limited coverage, and may raise privacy concerns. More recently, radio frequency (RF)-based approaches using commercial WiFi devices have emerged which offer low-cost ubiquitous sensing whilst preserving privacy. However, the output of an RF sensing system, such as Range-Doppler spectrograms, cannot represent human motion intuitively and usually requires further processing. In this study, MDPose, a novel framework for human skeletal motion reconstruction based on WiFi micro-Doppler signatures, is proposed. It provides an effective solution to track human activities by reconstructing a skeleton model with 17 key points, which can assist with the interpretation of conventional RF sensing outputs in a more understandable way. Specifically, MDPose has various incremental stages to gradually address a series of challenges: First, a denoising algorithm is implemented to remove any unwanted noise that may affect the feature extraction and enhance weak Doppler signatures. Secondly, the convolutional neural network (CNN)-recurrent neural network (RNN) architecture is applied to learn temporal-spatial dependency from clean micro-Doppler signatures and restore key points' velocity information. Finally, a pose optimising mechanism is employed to estimate the initial state of the skeleton and to limit the increase of error. We have conducted comprehensive tests in a variety of environments using numerous subjects with a single receiver radar system to demonstrate the performance of MDPose, and report 29.4mm mean absolute error over all key points positions, which outperforms state-of-the-art RF-based pose estimation systems
    corecore